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Abstract 
In counter-terrorism, urban warfare operations and active combat 
environments, some targets may be live people, while some targets may consist 
of fake materials such as mannequins. Determining whether these targets are 
alive or not is important for human life. In addition, it is important to determine 
whether the instruments used in the biometric verification steps belong to a 
real living thing. In this study, it is aimed to classify the determined targets as 
live/lifeless with low-power laser signals in situations where people cannot be 
reached directly. For this purpose, people as living samples and different types 
of lifeless materials at a certain distance were pointed with a low-powered laser 
light source and laser signals reflected from the targets were recorded with the 
receiving system. In the classification of Live / Lifeless, human vitality and other 
materials (non-living) in nature are compared. In the study, laser signal samples 
are taken from different points of the arm of 9 volunteer men for living assets 
and 17 materials frequently used by people for lifeless assets. For lifeless assets, 
often found in nature, aluminum, black, fabric, frosted glass, glass, pottery, iron, 
galvanize, granite, linden, magnet, mdf, marble, cardboard, polyethylene, 
polystyrene, PVC and artificial marble are selected. The laser signals obtained 
from the targets are classified as live/lifeless by undergoing training in Long-
Short Term Memory networks after preprocessing and feature extraction steps. 
As a result of the study, a live / lifeless assets distinction is made with an 
accuracy rate of 99.7%. 
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1. INTRODUCTION 

It is important to determine the vitality of the elements on the enemy front line in active war environments, in the 
fight against terrorism and in urban warfare operations. In some cases, mannequin and similar materials are used 
in the elements on the enemy line and if this can be detected remotely, significant gains can be achieved. In such 
cases, it is important to determine the presence of live / inanimate assets of the target from far distances with laser 
signals. Similarly, if real live targets can be detected in hostage operations, many lives can be saved. 

In addition, in biometric security systems, it is important to detect vitality in order to determine whether the 
fingerprint, photograph, retina belong to a living person. In this way, interference that imitates a person's biometric 
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data can be detected and necessary precautions can be taken. Printed photographs of the human face, patterns for 
fingerprints, and 3D masks for face detection are frequently used to overcome biometric measures [1–3]. 

Many studies have been carried out on viability detection in the literature. Some of these studies focused on radio 
frequency, some on cameras, and some on lasers. In the literature, there are studies on the localization of a person 
behind the wall with the wall radar and signs of life [4–7]. The focus of such studies is to take advantage of the 
micro-doppler characteristic caused by small vibrations in the body during human breathing. In such systems, a 
radio frequency signal is sent to the body, and when the signal reaches the body, small displacement information 
is returned as a phase shift signal due to breathing or heartbeat movement. 

In vitality detection studies with a camera, methods such as obtaining heart rate information, detecting blinking 
movements, detecting facial mimics, color gradient features are frequently used [1–3,8–20]. In vitality detection 
applications where camera systems are used, the system fails in insufficient light conditions or in cases where there 
is no light at all. 

One of the techniques used in vitality detection that allows for non-contact measurement is the use of lasers. Lasers 
have also become an important tool for optical remote sensing due to their ability to produce an intense amount of 
parallel beam consisting of monochromatic, coherent and polarized light. For the first time, there have been great 
developments in the production techniques of lasers produced using ruby crystal over time, and varieties operating 
at different wavelengths, different output powers and different pulse times have emerged [21]. According to the 
material used in the production of lasers, they are divided into four groups as gas lasers, liquid lasers, solid state 
lasers and semiconductor (diode) lasers. While lasers used in continuous wave form transmit a relatively low 
amount of energy to the target continuously, lasers in pulsed wave form can transmit instantaneously higher energy 
to the target at certain intervals. Diode lasers are small in size and low cost, they can be produced at different 
output powers and different wavelengths. Because of these advantages, they are frequently used in chemical 
analysis, remote sensing, medical applications, defense technologies, telecommunications and industry [22].  

When laser light is reflected on a target object, it is partially reflected, partially transmitted, or partially absorbed 
from the target. Laser beams reflected from the target can be measured and converted into signals with the help of 
high gain coefficient avalanche photo diodes in electro-optic devices. Due to the fact that different types of targets 
exhibit scattering and absorption properties in different ways, it is possible to obtain information about many types 
of living/lifeless targets around us using laser signals reflected from targets. 

Very small amounts of mechanical vibrations can be measured with laser interferometers [23–27]. With traditional 
Michelson interferometer-based laser vibration meters, it can measure heartbeats and skin changes during 
breathing at close range [28–30]. Such interferometers require stable optical setup and are not suitable for use 
outside the laboratory. Laser Doppler Vibrometers (LDV) are laser vibration meters that are widely used in 
measuring small vibrations and are also commercially available on the market [31]. In a study with LDV, vibrations 
in the chest wall as a result of beating of the heart were measured and the results were associated with ECG [32]. 
In another study, the vibrations of the skin surface in the neck are studied depending on the cardiac rate[33,34]. 
Qu et al. have worked on the detection of human voice using pan-tilt-zoom (PTZ) camera and LDV. In this study, 
they focused on the detection of the moving person with the PTZ camera and the orientation of the LDV on the 
moving person for sound detection with LDV [35].  

Marchionni et al. used LDV to measure heart and lung activities from a distance of about 2 m in preterm 
children[36]. Takano et al., in their study, reflected a laser beam on the subjects' face and recorded the laser spots 
formed for 30 seconds with a time-lapse camera. They extracted the subjects' heart rate information from the video 
recordings [37].  Ozana et al., in their study on farm animals, projected a laser light source to the targets and 
recorded the laser spots on the target with a 500-fps camera. They obtained the heart rate and respiratory 
information of the subjects with the signal processing methods from the video they recorded [38].  

In the previous studies carried out by our team, a single laser light source and receiver system are used to classify 
different types of lifeless materials at a distance [39,40]. 

In this study, when health teams such as earthquakes, floods, storms, war environments and falls from height 
cannot reach the patient directly, or when it is necessary to determine the viability of elements on the enemy front 
line in a combat environment, it is necessary to collect information with low power laser signs from the specified 
target and in the light of the information obtained, it is intended to be classified as life/lifeless. In the classification 
of live/lifeless, human vitality and other materials (non-living) in nature are compared. Within the scope of the 
study, laser signals are obtained from a certain distance from live and lifeless targets, the obtained signals are 
classified as live/lifeless by undergoing training in Long-Short Term Memory networks (LSTM) after 
preprocessing and feature extraction steps and the results are examined. 

When the literature is examined, it is seen that cameras are generally used in livelihood detection studies. Ambient 
light plays an important role in systems where cameras are used. In low lighting conditions, the performance of 
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the systems made with the camera decreases. In cases where there is insufficient or no ambient light, camera 
systems become completely inoperable. With the proposed system, an active measurement method using only laser 
light is presented. This study with laser light has the potential to be less affected by lighting conditions. The main 
contributions of this study are as follows. 

• Live/lifeless classification was made using a laser signal and deep learning architecture based on a single 
measurement point. 

• A faster classification time was obtained by using reduced size laser signals instead of raw laser signals 
in the detection of live/lifeless. 

• Classification of different types of lifeless assets and a living human tissue was performed based on laser 
signals and deep learning. 

•  

2. RELATED WORKS 

In this section, general information about the basics of laser measurement technique, which is the basis of the 
distinction between living tissue and lifeless materials, and the deep learning model used in classification are given. 

2.1. Interaction of laser light with materials and living tissue 

When laser beams are reflected on the surface of a material, they make specular or diffuse reflections depending 
on the surface roughness of the material. When the amount of roughness on the surface of the material is smaller 
than the wavelength of the laser light reflected on the material, specular reflection will occur, otherwise diffuse 
reflection will occur [40]. In cases where there is diffuse reflection, subsurface scattering occurs. Under natural 
conditions, many materials have a certain amount of rough surface due to the micro-textures on their surface. In 
this case, the laser beams reflected on the material reflect as a combination of specular and diffuse reflection. 
Figure 1 shows specular and diffuse reflection patterns of laser beams from the material surface. As can be seen 
in Figure 1, subsurface scattering can also occur in diffuse reflections. Since each material type has different 
surface textures and different microstructures, the laser signals reflected from the materials will also be different. 

 
Figure 1. Laser beams and reflection types a) Specular reflection from a smooth surface b) Diffuse reflection and 

subsurface scattering from a rough surface 

Lasers are in different wavelengths according to the production technique. Laser beams of different wavelengths 
and different optical output power can cause different effects on living tissues. When laser beams are projected 
onto a tissue, they show reflection, absorption, transmission and scattering [41]. Depending on the wavelength, 
the interaction of laser beams with living tissue can also be a mixture of them. Figure 2 shows the interaction of 
laser beams with living tissue. In this study, laser signals reflected from living tissue were used. The reflection 
amount of laser beams between 300-1100nm wavelength in soft tissues is 10 times higher than absorption. 

 
Figure 2. Interaction of laser beams with living tissue. Depending on the characteristics of the laser and the 

living tissue, the laser beam reflects, absorbs, transmits or scatters. 
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2.2. Deep learning: LSTM model 

The use of Deep learning algorithms has started to increase in many areas such as object recognition, signal 
processing, natural language processing. Deep learning is a type of artificial neural networks (ANN). The most 
important step in artificial neural networks and other machine learning algorithms is extracting properties from 
raw data [42]. This step is no longer required with use of deep learning networks. Deep learning networks can 
extract features from the raw data given to them due to their structure and transfer this important data as an input 
to the next layer [43]. 

Deep learning networks consist of different architectures according to the areas in which they are used. 
Convolutional neural networks (CNN) are often used in image processing and similar fields [42,44]. In addition, 
CNNs are used in signal processing [45,46]. Recurrent neural networks (RNN) architecture is frequently used in 
signal processing, natural language processing, and time series data processing [47–50]. RNN focuses on the 
relationship between the data in the input sequence given to it. Cells in this architecture use their outputs as input 
in the next process. In this case, the output of each cell depends on the previous output. A simple RNN cell and its 
expansion can be seen in Figure 3.  

 
Figure 3. RNN cell and its expansion 

RNN architecture succeeds in short-term dependencies but fails in long-term dependencies. Hochreiter et al. 
reported that the problem related to learning of long-term dependencies in RNN architecture was solved in their 
study made in 1997. This structure similar to RNN is called Long Short-Term Memory networks (LSTM). LSTM 
consists of a memory cell that can protect its state over time and non-linear gates regulating data input/output in 
the cell [40,51]. Input, forget, and output gates in an LSTM cell is interconnected by 4 neural networks and they 
form the cell memory. LSTM model, gates in its structure as well as the internal structure of an LSTM cell can be 
seen in Figure 4.  

 
Figure 4. LSTM model, gates in its structure and the internal structure of the LSTM cell 

In LSTM cell model shown in Figure 4, out of the forget gate is represented by 𝑓𝑓𝑡𝑡, out of the input gate by 𝑖𝑖𝑡𝑡 
whereas out of the output gate is represented by 𝑜𝑜𝑡𝑡, the cell state by 𝐶𝐶𝑡𝑡 and out of the cell by ℎ𝑡𝑡. 𝑓𝑓𝑡𝑡,  𝑖𝑖𝑡𝑡,  𝐶𝐶𝑡𝑡, 𝑜𝑜𝑡𝑡 and 
ℎ𝑡𝑡  are defined in Eq. 1 - 5. Weights are represented by 𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖,𝑊𝑊𝑐𝑐 ,𝑊𝑊𝑜𝑜, bias values are represented by 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑐𝑐 , 𝑏𝑏𝑜𝑜 
[40]. 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (1) 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗  [𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)] (3) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (4) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡) (5) 
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3. MATERIALS AND METHODS 

3.1. Experimental Setup and Data Collection 

Laser meter module that emits red light at 1 mW output power and 650 nm wavelength is used in the scope of the 
study. The firmware of the laser meter module is reprogrammed to take 3000 raw laser mark samples per 
measurement and transfer them to the computer via the serial port [39].  Different points of the live / lifeless targets 
in the laboratory environment are pointed with the laser light source on the cartesian robot arm in line with the 
coordinates coming from the computer program, and the laser signals reflected from the target are detected by the 
device and transferred to the computer system. The distance between the laser light source and the targets is chosen 
as 2 meters. In Figure 5, the sensor module consisting of the experimental study setup, laser light source and optical 
device are shown. 

   
Figure 5. a) Experimental work setup.  b) Laser light source and optical system. 

In the study conducted during daylight hours, 130 laser signal samples are taken from different points of the arm 
of 9 volunteer men for live assets, and 69 laser signal samples from different points of 17 materials frequently used 
by people for lifeless assets. Aluminum, black fabric, frosted glass, glass, pottery, iron, galvanize, granite, linden, 
magnet, mdf, marble, cardboard, polyethylene, polystyrene, pvc and artificial marble are selected for lifeless assets. 
In Figure 6, the visuals of the materials used in the study and the position of living and inanimate beings in the 
experimental setup are shown. In addition, before each measurement, measurements are made by turning off the 
laser light to detect white noise caused by the device and daylight. At the end of the data collection process, a total 
of 1170 laser signals are obtained from the arms of male subjects and a total of 1170 laser signals from lifeless 
assets. 

    
Figure 6. Images of the materials used in the study and the position of live/lifeless assets in the experimental 

system. 

3.2. Signal Processing and Deep Learning 

The study consists of steps for data collection, data preparation and classification. Figure 7 shows the block 
diagram of the study. 

 
Figure 7. Block diagram of the study 
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In the preprocessing step of the study, the subtraction process defined in Equation 6 is performed to separate the 
environment & system noise signals from the laser signals obtained from live and lifeless assets. 

𝑥𝑥(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) − 𝑑𝑑(𝑛𝑛) (6) 

In Equation 6, 𝑥𝑥(𝑛𝑛) refers to the noise-free laser signal, s(𝑛𝑛) refers to the noisy laser signal, and 𝑑𝑑(𝑛𝑛)  refers to 
the environment & system noise signals. In Figure 8, the raw laser signals of the male subject's arm, aluminum, 
linden(wood) and pottery are seen, environment & system noise signals are seen and the laser signals as a result 
of the subtraction process are seen. 

 
Figure 8. Raw laser signals of live, lifeless(aluminum), lifeless(linden), lifeless(pottery) materials, environment 

& system noise signals and the laser signals as a result of the subtraction process 

The normalized energy distribution graph of the raw laser signals obtained after subtracting the background noise 
signals from the raw signals obtained from living and lifeless assets is given in Figure 9. 

 
Figure 9. Energy distributions of raw laser signals reflected from living and lifeless assets after subtraction 

process 

The spectral power density is based on the process of estimating the power distribution in the frequency band of 
the signal. This process is based on the Fourier transform. Welch method is an advanced version of this method 
[31]. The Welch spectral power density is explained as in Equation 7. 

𝑃𝑃𝑤𝑤 = 1
𝑙𝑙
∑ 𝑆̌𝑆𝑥𝑥𝑥𝑥𝑖𝑖 (𝑓𝑓)𝑙𝑙−1
𝑖𝑖=0  (7) 

In Equation 7, 𝑃𝑃𝑤𝑤 shows Welch spectral power density,  𝑆̌𝑆𝑥𝑥𝑥𝑥𝑖𝑖 (𝑓𝑓) shows the 𝑖𝑖𝑡𝑡ℎ  improved periodogram of spectral 
power density, and 𝑙𝑙 shows the length of the signal. In the study, Welch spectral power density is applied to laser 
signals following subtraction process. Figure 10 shows the laser signals with subtraction process and laser signals 
with Welch spectral power density applied. 
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Figure 10. Preprocessed laser signals for live, lifeless(aluminum), lifeless (galvanize) materials and laser 

signals with Welch spectral power density applied 

In the study, a bidirectional LSTM architecture consisting of 64 hidden layers are used to classify laser signals 
from a total of 2340 live/lifeless assets obtained as a result of signal processing steps. Figure 11 shows the LSTM 
architecture used in the study. In the study, the number of hidden layers, layer structures and hidden unit numbers 
in the layers were selected by trial-and-error method. 

 
Figure 11. LSTM architecture used in the study 

3.3. Performance Evaluation 

In this study, the performance of the proposed model was evaluated using a 10-fold cross validation technique. 
This technique avoids obtaining biased results in validation results [52].  The data set obtained was randomly 
divided into 10 equal parts so that the amount of data in each class was equal. While 9 parts of the data set divided 
into parts were used for training the model, the remaining part was used for the performance test of the model. 
This process was done for all parts of the data set and the overall performance of the system was found by averaging 
the results obtained from the test results. The graphical model of training and test data according to the 10-fold 
cross-validation technique can be seen in Figure 11. 

 
Figure 11. Graphical model of training and test data according to 10-fold cross validation technique. 

Classification accuracy was used to compare the proposed system with existing studies. It is extremely important 
to use the same performance criteria to make comparative assessments with existing studies. Most of the existing 
studies use accuracy criteria in classification. Considering the accuracy criterion is a reasonable criterion in studies 
where the data set is balanced. The accuracy criterion can be defined as the ratio of the estimates that the classifier 
makes correctly to all estimates. The accuracy of the proposed method can be calculated as in Eq. 8. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

   (8) 
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True positive (TP), true negative (TN), false positive (FP), and false negative (FN) were taken as basis for the 
calculation of accuracy performance criteria. In this study, precision, recall and F-score evaluation criteria were 
used as well as accuracy performance criteria. These definitions are shown in the following equations [53]. 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 (9) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 (10) 

𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (11) 

4. RESULTS AND DISCUSSION 

In LSTM architecture, which is used for classification of live and lifeless assets, the data set is divided into 10 
equal parts, and the remaining data is used for training at a time. The hyper parameters used for the training of the 
LSTM network were determined as the maximum epoch number of 100, the learning rate 0.001, and the 
optimization algorithm Adam. Mini-batch size was chosen as 256. 

The length of the raw laser signals obtained from the experimental studies consists of 3000 points. Measurements 
were taken with the laser beams on and off to eliminate environment/device noise. During the data preparation 
phase, these signals were subtracted from each other and the noise in the signals was removed. As it is known, 
processing high-dimensional signals in deep learning models is time consuming and costly. For this reason, the 
noise-free raw laser signals were converted into signals of much smaller size (63 points) by calculating the Welch 
spectral power densities. In the experimental studies, the reduced size laser signals were trained separately in 16, 
32, 64, 128 hidden layer LSTM networks and their performances were compared. The calculation time of a signal 
from the raw laser signal according to the Welch method took 0.026 s. 

Training of reduced size laser signals in the LSTM model significantly increases the performance and speed of the 
system. With the reduction of the data size, the training time in the 64 hidden layer LSTM network takes 0.55 
seconds per epoch. Average classification results, training times and LSTM hidden layer numbers of the reduced 
size laser signals are given in Table 1. 

Table 1. Hidden layers, average classification results and training times of laser signals with reduced 
dimensions. 

LSTM Hidden Layer 16 32 64 128 

Training time (1 epoch) 0.39 s 0.44 s 0.55 s 0.87 s 

Recall % 97.42 ± 4.38 % 99.29 ± 0.81 % 99.70 ± 0.45 % 99.49 ± 0.44 
Precision %97,39 ± 4,42 %99.27 ± 0.83 %99.70 ± 0.45 %99.49 ± 0.44 
F1-score % 97,41± 4,40 % 99.28 ± 0.82 % 99.70 ± 0.45 % 99.49 ± 0.44 
Accuracy % 97.39 ± 4.42 % 99.27 ± 0.83 % 99.70 ± 0.45 % 99.49 ± 0.44 
 

After the training of the network, the classification performance in the test data is calculated as the lowest 98.72%, 
the highest 100% and the average performance is 99.70%. Figure 12 shows the confusion matrix of the highest 
training and test performance of the 64 hidden layers LSTM network. 

 
Figure 12. Confusion matrix showing the highest results in the classification performance of live and lifeless 

assets. 
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In this study, it is aimed to classify the target determined by low-power laser signals from a certain distance as 
live/lifeless when it is necessary to detect the vitality of the elements on the enemy front line in the war environment 
or to determine whether the people using biometric verification systems are real people. For this purpose, laser 
signals are obtained from the arms of the volunteer subjects and 17 materials, the laser signals obtained are passed 
through the signal processing steps and they are trained and classified using the LSTM architecture used in deep 
learning networks. With the proposed system, a high performance of 99.70% has been achieved. 

In later studies, the classification of the target from more distances and the effect of atmospheric conditions on the 
performance of the system can be examined. 
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