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Abstract

Very recently great progress has been achieved for a new type of quantum
device: quantum batteries (QBs) which are capable to be charged, to store
energy and finally to transfer it to consumption centers and other quantum
devices. We develop here our theoretical feedback control algorithm for
charging Bosonic quantum batteries with two different topologies of interaction
between the charger and the battery set: parallel versus collective transfer of
energy. The model of QB is composed of non-mutually interacting elements
(quantum harmonic oscillators) in a Markovian bath. The charger of such a
battery is implemented via the field which is pumping the energy into the
batteries. We study the control approach in the form of Kolesnikov’s target
attractor to track (i.e. to drive dynamically) the charging power of the batteries.
We discuss the pros and cons of the control models for different charging
schemes; demonstrate their efficiency, robustness and stability. The proposed
algorithms can be applied to other physical types of quantum devices: Dicke QBs
and spin QBs.
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1. INTRODUCTION

Quantum Battery (QB) represented by systems with distinct quantum states must be able to perform its three
basic tasks [1]:

» It can be charged, i.e. it can be transferred from its lower energy state to more energetic states. The
important fact is that charging / discharging processes are not necessarily unitary, and during this
process, QB may interact with its environment.

» ltcan efficiently store the transferred energy at the upper energy levels.
e It can transfer the stored energy to consumption centers.

The schematic diagram of an open Quantum Battery B interacting with charger A is represented in Figure 1.
Each of the sub-systems, A and B, are coupled individually into an environment. In addition, one can apply an
external control field to charger A [2].

There are different types of quantum batteries that could be realized in particular systems:
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» Dicke QB, where one cavity mode acting as the charger is coupled to N qubits, which play the role of
the battery [3, 4];

»  Spin QB composed by N qubits, acting as a charger, this charger is coupled to another set of N qubits,
which play the role of the battery [5, 6];

» Bosonic harmonic oscillator QB, where the sub-system B is composed of N non-mutually interacting
elements [7, 8].

Eg)

Figure 1. Diagram of an open Quantum Battery B interacting with the charger A, based on [2].

Here we discuss the last type of QB: the Bosonic quantum battery with two alternative charging schemes [9], see
Figure 2.

Figure 2. Two basic schemes of the parallel (left) versus collective (right) QB charging, based on [9].

The performance of QB can be enhanced by increasing the coupling strength between the nearest-neighbor
environments and decreasing the size of the environments [10]. A well-engineered quantum battery is capable to
store relatively more energy as compared with its non-engineered counterpart over the course of the storage
phase, and the excess in such stored energy is independent of the quantum system size [11].

It has been proved also that for an array of N qubits an N-fold advantage in power per qubit can be achieved
when global operations are permitted [12].

Recently, different control algorithms have been applied to quantum batteries: like the open-loop harmonic
control [13] and the linear feedback [14]. Even linear feedback counteracts the randomizing influence of
environmental noise and allow for stable and effective battery charging [14].
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Our theoretical feedback control algorithm is applied for charging Bosonic quantum batteries with two different
topologies of interaction between the charger and the battery set: parallel versus collective transfer of energy. We
use Kolesnikov’s target attractor algorithm to track (i.e. to drive dynamically) the charging power of the
batteries.

2. MATHEMATICAL MODEL FOR BOSONIC QUANTUM BATTERY

The model of QB is composed of non-mutually interacting elements (quantum harmonic oscillators) in a
Markovian bath. The charger for such a battery is implemented via the field which controls pumping the energy
into the batteries.

2.1. Ergotropy and charging power

The energy storage of QB depends on the time-independent reference Hamiltonian H with the finite Hilbert
space of the battery system. The useful energy exacted from QB in the state p and its energetically lowest
accessible state o, is defined via its ergotropy [15]:

W =Tr(pH)-Tr(o,H). 1)
The time derivative of (1) is called the charging power of the battery:
dw
=, )
P dt

We will use our control algorithm to drive the parameter (2) dynamically, i.e. we will discuss the tracking of
charging power p as a given target function.

2.2. Bosonic harmonic oscillator quantum battery

The system includes the sub-system A (charger) and the sub-system B (battery) with the corresponding
Hamiltonians Ha and Hg and the Hamiltonian H; for the coupling between A and B [1]:

Ht)=H,+H;+u(®)H, , (3)
where
H,=maa;
Hy =, ;b @
k

H, = gZ(abk* +a*bk) ,
k

with the corresponding creation-annihilation operators; and u(t) is a time-dependent external control parameter.
The bosonic harmonic oscillator QB is composed of N non-mutually interacting elements marked with the index
k.

Let’s consider a single-qubit based bosonic QB in the form of a quantum oscillator with the density operator p in
a Markovian bath. Such a system is described with the Lindblad-type operator equation [16]:

%0 ——itH, +u®Q,p1+ o1 ©)

with the terms based on the creation-annihilation operators:

1 ~ b*+b ~ o
H,= = |b'b; = : P:‘/—°b+—b. 6
0 (a)o"'zj Q /—2600 I 2( ) (6)

The Lindblad operator in (5) has a form;
([p] = 7-(n(t) +1)2bpb" — po'b—b*bp)+y-n(t)(20* pb—bb* p— pbb*) . (7)

The positive parameter y plays here a role of coupling constant between the qubit and the environment. The
external fields u(t) and n(t) are our control parameters.

2.3 Reduced system of differential equations

The quantum model (5)-(7) can be re-written in the form of the dynamical system with real ordinary differential
equations [17]:
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_(jthE =2y -(opn(t)—E)-u(t)P;
dQ

=P-7.0 : 8
at 7-Q ®)
dP
E=—a}§Q—y~P—u(t) ;

expressed via the ‘quasi-classical’ variables:
E®)=Tr(Hep); QM) =Tr(Qp) ; P()=Tr(Pp). (©)
The ergotropy (1) of the system (8) is defined as:
W(t)=E(t)-E,, (10)

Where E, stands for the lowest accessible passive battery state.

3. CONTROL OVER THE CHARGING POWER

To perform control over the charging power we use here Kolesnikov’s Target Attractor (TA) feedback approach
based on the creation in the driven dynamical system a target attractor locking the trajectories in its
neighborhood [18].

3.1. Kolesnikov’s target attractor feedback

For the purpose of tracking the charging power (2) we define the goal function:

G(t) =p(®) - p.(1), (11)

with the arbitrary differentiable target function p.(t). To form Kolesnikov’s attractor, we demand the

exponentially fast convergence towards the tracking goal:
ag(t) 1

_2G, 12
i® T G(t) (12)

with a positive time constant T;. Particularly, for model (8), we define the TA control equations as the following
set:

£ 2E-e);
' (13)
P Le-p).
dt T,
Here T is also a positive constant. The system (13) has the solutions:
_ _ LAt .
E()=[EQ)-E]e"" +E )

P(t)=P(0)-e"+P.-(1-e"'") .

The substitution of (14) into the system (8) restores the form of both control fields for a single battery element:

dn(t) _ p(t)+ 1 |:P dU(t)+u(t) dpP M_ 1 (p(t)_ p*(t))};

_ + JE—
dt w, 2yw, dt dt da T, (14)

By Eqgs (14) we can study the achievability of the control goal.
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3.2. Achievability of the control goal as t >> T, T2: parallel vs collective charging

Let’s check the achievability of the control goal at the limit: t >> Ty, T».

For the parallel scheme (see Fig.2, left) we can define different target P~ for each k-th battery element:
2
o,
P,=-—Q(0)- (15)
/4

In this case, we can re-write the control fields (14) as:

2

u, (t) = ngk(O)'[ —&J-(l—eﬁ) :
v

t 2 2
p.(7) 1 dp.(r) &y Oy |2y e
n (t) = . -1+ 0)e” tdr .

k( ) '(';{ 0)0 + 2}/@(}2 dT 27/ + }/2 Qk( ) T

(16)

For the collective scheme (see Fig.2, right) charger A must drive each battery for the same target state:
P, — P., Vk. By that the dynamical parameter Qx can be evaluated as:

P. Pl
Qk;—+{Qk(O)——]e7‘ : A7)
Y e
By (8) that implies for the control field uy:
2 2
u =27 p —co({Qk (0) —5} e (18)
v /4

In the case, if we demand the target P» to be zero:
P.=0 , (19)
and the pair of control fields (14) becomes:

U, = -2;Q,(0)-e7” ;

nk(t)=j{p(7)+ : dp*(T)}df. @

ol @ 2yw, dr

Now we can compare the shapes of the control fields (14) for the parallel and collective approaches. For the

parallel case (16), the control fields ux are closed to O for each k-th battery: u, = 0, while the control fields ny are
more complex for the practical computations. For the collective case of charging (20), the fields ux tend to 0
asymptotically: u, = -@?Q, (0)-e™", while n, are more simple for the numerical computations.

4. CONCLUSIONS

The algorithm of the control over the charging power proposed here has the following basic characteristics. This
algorithm is universal and does not depend on the initial conditions of the dynamical variables. It is robust and
stable under the perturbation of the initial conditions and a relatively small external noise.

The proposed algorithm can be extended for different physical realizations of quantum batteries: Dicke QB,
spin QB; and for all working stages of the QB (charging, long time storage and the energy transfer to a
consumption center or engine) and it can be easily extended for a multi-qubit model.

From the point of practical computation of the coherent and non-coherent fieldsu and n the control algorithm for
Bosonic quantum batteries demonstrates different features for two alternative schemes of charging:

e For the parallel scheme of charging the control signal u (interaction between the battery and the
charger) tends to 0 as the time is increasing. From another hand, the control signal n (interaction with
the Markovian environment) is more complex for computation.
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e For the collective scheme of charging the control signal u (interaction between the battery and the
charger) tends exponentially to 0 as the time is increasing. At the same time, the control signal n
(interaction with the Markovian environment) becomes simpler for the numerical computation.
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